Study of Alginate-Supported Ionic Liquid and Pd Catalysts

نویسندگان

  • Claire Jouannin
  • Chloë Vincent
  • Isabelle Dez
  • Annie-Claude Gaumont
  • Thierry Vincent
  • Eric Guibal
چکیده

New catalytic materials, based on palladium immobilized in ionic liquid supported on alginate, were elaborated. Alginate was associated with gelatin for the immobilization of ionic liquids (ILs) and the binding of palladium. These catalytic materials were designed in the form of highly porous monoliths (HPMs), in order to be used in a column reactor. The catalytic materials were tested for the hydrogenation of 4-nitroaniline (4-NA) in the presence of formic acid as hydrogen donor. The different parameters for the elaboration of the catalytic materials were studied and their impact analyzed in terms of microstructures, palladium sorption properties and catalytic performances. The characteristics of the biopolymer (proportion of β-D-mannuronic acid (M) and α-L-guluronic acid (G) in the biopolymer defined by the M/G ratio), the concentration of the porogen agent, and the type of coagulating agent significantly influenced catalytic performances. The freezing temperature had a significant impact on structural properties, but hardly affected the catalytic rate. Cellulose fibers were incorporated as mechanical strengthener into the catalytic materials, and allowed to enhance mechanical properties and catalytic efficiency but required increasing the amount of hydrogen donor for catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial acetylene hydrogenation over commercial Pd-Ag/α-Al2O3 catalyst promoted by ionic liquid

1-butyl-3-methyl imidazolinium hydroxide ionic liquid (BMIm[OH]) is loaded on commercial low surface area Pd-Ag/α-Al2O3 solid ‎catalyst to enhance higher selectivity of acetylene partial hydrogenation. Different experimental techniques such as atomic absorption spectroscopy, surface area measurement and gas chromatography have been utilized to characterize chemical, structural and catalytic pro...

متن کامل

Silylation of alcohols and phenols by HMDS in the presence of ionic liquid and silica-supported ionic liquids

In this research, different alcohols and phenols are subjected to the reaction with HMDS in the presence of ionic liquid and silica-supported catalysts. Silylation was accomplished under mild reaction conditions at room temperature in short reaction times and good to excellent yields.

متن کامل

Silylation of alcohols and phenols by HMDS in the presence of ionic liquid and silica-supported ionic liquids

In this research, different alcohols and phenols are subjected to the reaction with HMDS in the presence of ionic liquid and silica-supported catalysts. Silylation was accomplished under mild reaction conditions at room temperature in short reaction times and good to excellent yields.

متن کامل

High-performance supported catalysts with an ionic liquid layer for the selective hydrogenation of acetylene.

Pd-Ag shell catalysts impregnated with two different ionic liquids show considerable improvements both in ethylene selectivity and reduced ethane formation in the selective hydrogenation of acetylene under tail-end conditions.

متن کامل

Silica-gel-confined ionic liquids: a new attempt for the development of supported nanoliquid catalysis.

A new concept of designing and synthesizing highly dispersed ionic-liquid catalysts was developed through physical confinement or encapsulation of ionic liquids (with or without metal complex) in a silica-gel matrix through a sol-gel process. We studied ionic liquids such as EMImBF4, BuMImBF4, DMImBF4, CMImBF4, BuMImPF6, either with or without [Pd(PPh3)2Cl2] and [Rh(PPh3)3Cl], in a silica-gel m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012